|
博弈论是指某个个人或是组织,面对一定的环境条件,在一定的规则约束下,依靠所掌握的信息,从各自选择的行为或是策略进行选择并加以实施,并从各自取得相应结果或收益的过程,在经济学上博奕论是个非常重要的理论概念。
下面介绍几个关于博弈论的例子:
1。智猪博弈
这个例子讲的是:猪圈里有两头猪,一头大猪,一头小猪。猪圈的一边有个踏板,每踩一下踏板,在远离踏板的猪圈的另一边的投食口就会落下少量的食物。如果有一只猪去踩踏板,另一只猪就有机会抢先吃到另一边落下的食物。当小猪踩动踏板时,大猪会在小猪跑到食槽之前刚好吃光所有的食物;若是大猪踩动了踏板,则还有机会在小猪吃完落下的食物之前跑到食槽,争吃到另一半残羹。
那么,两只猪各会采取什么策略?答案是:小猪将选择“搭便车”策略,也就是舒舒服服地等在食槽边;而大猪则为一点残羹不知疲倦地奔忙于踏板和食槽之间。
原因何在?因为,小猪踩踏板将一无所获,不踩踏板反而能吃上食物。对小猪而言,无论大猪是否踩动踏板,不踩踏板总是好的选择。反观大猪,已明知小猪是不会去踩动踏板的,自己亲自去踩踏板总比不踩强吧,所以只好亲力亲为了。
“小猪躺着大猪跑”的现象是由于故事中的游戏规则所导致的。规则的核心指标是:每次落下的事物数量和踏板与投食口之间的距离。
如果改变一下核心指标,猪圈里还会出现同样的“小猪躺着大猪跑”的景象吗?试试看。
改变方案一:减量方案。投食仅原来的一半分量。结果是小猪大猪都不去踩踏板了。小猪去踩,大猪将会把食物吃完;大猪去踩,小猪将也会把食物吃完。谁去踩踏板,就意味着为对方贡献食物,所以谁也不会有踩踏板的动力了。
如果目的是想让猪们去多踩踏板,这个游戏规则的设计显然是失败的。
改变方案二:增量方案。投食为原来的一倍分量。结果是小猪、大猪都会去踩踏板。谁想吃,谁就会去踩踏板。反正对方不会一次把食物吃完。小猪和大猪相当于生活在物质相对丰富的“共产主义”社会,所以竞争意识却不会很强。
对于游戏规则的设计者来说,这个规则的成本相当高(每次提供双份的食物);而且因为竞争不强烈,想让猪们去多踩踏板的效果并不好。
改变方案三:减量加移位方案。投食仅原来的一半分量,但同时将投食口移到踏板附近。结果呢,小猪和大猪都在拼命地抢着踩踏板。等待者不得食,而多劳者多得。每次的收获刚好消费完。
对于游戏设计者,这是一个最好的方案。成本不高,但收获最大。
原版的“智猪博弈”故事给了竞争中的弱者(小猪)以等待为最佳策略的启发。但是对于社会而言,因为小猪未能参与竞争,小猪搭便车时的社会资源配置的并不是最佳状态。为使资源最有效配置,规则的设计者是不愿看见有人搭便车的,政府如此,公司的老板也是如此。而能否完全杜绝“搭便车”现象,就要看游戏规则的核心指标设置是否合适了。
比如,公司的激励制度设计,奖励力度太大,又是持股,又是期权,公司职员个个都成了百万富翁,成本高不说,员工的积极性并不一定很高。这相当于“智猪博弈”
增量方案所描述的情形。但是如果奖励力度不大,而且见者有份(不劳动的“小猪”也有),一度十分努力的大猪也不会有动力了----就象“智猪博弈”减量方案一所描述的情形。最好的激励机制设计就象改变方案三----减量加移位的办法,奖励并非人人有份,而是直接针对个人(如业务按比例提成),既节约了成本(对公司而言),又消除了“搭便车”现象,能实现有效的激励。
许多人并未读过“智猪博弈”的故事,但是却在自觉地使用小猪的策略。股市上等待庄家抬轿的散户;等待产业市场中出现具有赢利能力新产品、继而大举仿制牟取暴利的游资;公司里不创造效益但分享成果的人,等等。因此,对于制订各种经济管理的游戏规则的人,必须深谙“智猪博弈”指标改变的个中道理。
2.囚徒困境
在博弈论中,含有占优战略均衡的一个著名例子是由塔克给出的“囚徒困境”(prisoners’ dilemma)博弈模型。该模型用一种特别的方式为我们讲述了一个警察与小偷的故事。假设有两个小偷A和B联合犯事、私入民宅被警察抓住。警方将两人分别置于不同的两个房间内进行审讯,对每一个犯罪嫌疑人,警方给出的政策是:如果一个犯罪嫌疑人坦白了罪行,交出了赃物,于是证据确凿,两人都被判有罪。如果另一个犯罪嫌疑人也作了坦白,则两人各被判刑8年;如果另一个犯罪嫌人没有坦白而是抵赖,则以妨碍公务罪(因已有证据表明其有罪)再加刑2年,而坦白者有功被减刑8年,立即释放。如果两人都抵赖,则警方因证据不足不能判两人的偷窃罪,但可以私入民宅的罪名将两人各判入狱1年。
我们来看看这个博弈可预测的均衡是什么。对A来说,尽管他不知道B作何选择,但他知道无论B选择什么,他选择“坦白”总是最优的。显然,根据对称性,B也会选择“坦白”,结果是两人都被判刑8年。但是,倘若他们都选择“抵赖”,每人只被判刑1年。(抵赖、抵赖)是最优的,因为偏离这个行动选择组合的任何其他行动选择组合都至少会使一个人的境况变差。不难看出,“坦白”是任一犯罪嫌疑人的占优战略,而(坦白,坦白)是一个占优战略均衡。
3.笨蜗居
Ross和Rachel是一对情侣,暗地里都有过不忠的行为。但他们并不想分开,而是希望能继续生活在一起,于是不得不面对一个问题:是否应该向对方坦白自己的不忠行为?对于Ross来说,他有两个战略,“坦白”或者“隐瞒”。如果他向Rachel坦白自己的过错,Rachel作为“清白”的一方(Ross并不知道Rachel的不忠行为,当Rachel选择“隐瞒”)将在二人关系中占据心理优势,从而使得Ross处于弱势状态。如果他决定隐瞒,则将背负良心上的谴责。这个博弈是对称的,因此对于Rachel来说同样存在这样的两难抉择。
我们引入经济学的收益概念来衡量博弈中战略的优劣,设收益上限为10分。如果Rachel选择“隐瞒”而Ross选择“坦白”的话,Rachel将占据“我是清白的”的心理优势,从而获得9的收益,而劣势一方的Ross的收益只有5。反过来对Ross来说也是一样。如果两人都不约而同地选择“坦白”,虽然彼此都会感到被背叛的痛苦,但是能够将心比己地互相原谅,二人的收益都是8。如果两人都选择“隐瞒”,他们之间感情得以维系的信任基础已经在事实上消失了,对双方来说都是非常大的损失,收益都只有6。下表列出了四种情况下双方的收益,Rachel在前。
| Ross | 坦白 | 隐瞒 | Rachel | 坦白 | 8 , 8 | 5 , 9 | 隐瞒 | 9 , 5 | 6 , 6 |
直观地说,肥皂剧观众和经济学家们最愿意看到的结果自然是双方都坦承错误并互相原谅,这样可以使这部肥皂剧更加吸引人并且使双方收益之和最大。但博弈论给出的结论却正好相反。
从表中可以看出,在Rachel选择“坦白”的情况下,Ross选择“隐瞒”的收益大于选择“坦白”的收益;在Rachel选择“隐瞒”的情况下,Ross选择“隐瞒”的收益也大于选择“坦白”的收益。因此,“隐瞒”对于Ross来说是一个占优战略,无论对方做出什么选择,这个战略都可以保证他的收益最大。作为一个理性的人(这是博弈论的基本假设),Ross必然会选择“隐瞒”。同样,Rachel也会选择“隐瞒”。于是,博弈的结果就是双方都选择“隐瞒”,各得到6收益。 这是个稳定的纳什均衡,虽然结果出乎意料:博弈双方都选择了使自己利益最大化的战略,却得到了最差的收益(总收益是四种方案中最低的)。
而观众所期待的“彼此坦白”的情况下,任何一方都可以通过改变策略而获得更大的收益,比如Ross由“坦白”转向“隐瞒”可以使自己的收益由8上升到9。因此它是一个不稳定解,必须依靠某种外界约束才能存在。我们设想Ross和Rachel之间达成某种形式的协议,承诺对对方的不忠行为既往不咎。在这个约束条件下“彼此坦白”的解能够稳定存在,这就是合作解。
这是个典型的社会两难问题。各自从自身利益出发的博弈双方会自然而然地达到稳定的纳什均衡,但这往往导致最坏的收益。如果双方能建立有约束力的协议,则可以形成合作解,从而获得最好的收益。
|
|